ㄷSI=
 THE EXPERIENCE

This project is supported by a grant from the National Science Foundation a warded to the Fort Worth Museum of Science and History.
The Teaching Materials were developed by Rice University Centerfor Technology in Teaching and Learning.
Other partners include the Americ an Academy of Forensic Sciences and CBS.
TM CBS Broadcasting Inc. \& © 2000-2007 C BS Broadc a sting Inc. a nd Alliance Atla ntis Productions, Inc. All Rights Reserved

PROBLEM：

You are applying for your first job as a document examiner．Your prospective boss wants to test your powers of observation with a short quiz．He has gathered handwriting samples from various offic e employees and wants you to correctly match each pair of handwriting samples．

ロNLINE ACTIVITY：

This a ctivity is a vailable in an on－line format at http：／／forensic s．ric e．edu／html／handwriting．html． There is no preparation required for the online activity． Each student orgroup of students can complete the activity on their own computer and print a copy from the website after completion．

CLASSRロロM ACTIVITY：

You will need to collect two writing samples from students so they can attempt to match them．The samples should be labeled so you can tell which pair of samples match．Decide which of the two following methods will work best for you．
Method 1：This method haslargergroups，but can be completed in one class period．It is not as challenging asMethod 2.
1．Give each student two note cards．The kind with lines is preferable but not required．For ease of sorting the cards， you could use one white note card and one colored note card．Or，just put a colored line ordot on one of the white cards you give to each student．
2．Have the student write the word＂dictionary＂，in their normal handwriting，on each card．Remind students to write the word carefully on the lines．
3．Asthey are writing the words，move around the room and assign numbers／letters so you can tell later which cards match．Have the students write the number on one card and the matching letteron the back of the other card． You should copy or print off this key and make assignments from the following list，using each combination only once：A－30；B－29；C－28；D－27；E－26；F－25；G－24；H－23；I－22；J－21；K－20；L－19；M－18；N－17；O－16；P－15；Q－14；R－13；S－12； T－11；U－10；V－9；W－8；X－7；Y－6；Z－5；AA－4；BB－3；CC－2；DD－1．
4．Divide students into groups of six to eight．Have one group member bring paperand pencil to record for the team．
5．In their groups，students should collect all of the cards and then exchange them with another group．
6．Instruct students to lay the colored cards in one column and the white ones in a nother column．Don＇t have them match the samples yet．Give the groups two minutes to discuss and rec ord the types of characteristics they think they could use to match up the handwriting samples．The recordercreates a list．
7．Stop the class and have each group share one idea from their list．If they do not include all of the items mentioned in the Teacher Notes section，you may fill in with ones they forgot．
8．Instruct them to match the handwriting samples．The recorder may write the matching letters a nd numbers which the group decidesupon and bring them to the teacherto check against the key．Circle ones that are incorrect and let the group try to fix their mistakes．Once all of them are correct，they may exchange cards with another group．

Method 2: Formore of a challenge and to create an activity where students can work in smaller groups of one to three, change the activity in the following way:

1. On the day before the activity, pass a round a piece of lined paper with two columns drawn on it. Have students write the word "dictionary" in each column right ac ross from each other. You could number the rows to make sure they remember to skip lines and then cut the numbers off later.
2. To make samples for each class period, first, create a key by assigning alphabet letters to one column and random numbers to the second column. Don't do a pattem that is predictable, and don't use the same number twice. Write the numbers and letters next to the sample on the front of the papernext to the word. Label which class period the sample is from and PHOTO COPY OR REC ORD THE LETIER/NUMBER MATCHES TO MAKE YOUR KEY.
3. Cut apart the sec ond column, rea rrange the order, and ta pe the second column back in place. Note that using about 10-15 of the samples will make a workable numberforstudents to match. Photocopy the number needed for your group sizes. You could create a second set with the remaining handwriting samples to be used by students who suc cessfully complete the first matches.
4. The next day, divide into groups of one to three and distribute the sample page. Give the groups two minutes to discuss and record the types of characteristics they think they could use to match up the handwriting samples.
5. Stop the class and have each group share one idea from their list. If they do not include all of the items mentioned in the Teacher Notes, you may fill in with ones they forgot.
6. Instruct your students to match the handwriting samples. The group may record the matching letters and numbers and bring them to the teacherto check against the key. Circle ones that are incorrect and let the group try to fix their mistakes. Once they have all of them correct, they could try the sec ond set of samples (see \#3 above.)

TEACHER NロTES

Handwriting a nalysis is one of the earliest and most prominent forms of questioned document exa mination. Successful comparison depends on identifying several tra its students may instictively grasp-the slant of the letters, the symmetry of certa in "loop" letters (e.g. e.f.g, etc.), the " \mathbf{i} " dotor " \mathbf{t} " c rossing. Additional traits you may want to point out include heightratios (the height of the letter " t " compared to the " h ", or " c " to the " i ," for example), alignment to baseline (does the writing slant upwards, downwards, or curve?), and movement (the connection between the letters).

Questioned document examination extends beyond handwriting analysis. Examiners may be called on to prove the validity of typed or photocopied documents, postage stamps, currency, money orders, receipts, tickets, or any number of unusual "doc uments."

MATERIALS:

Method 1: •Two note cards perstudent, one of them color-coded
Method 2: • Wide lined notebook paper (two pieces per class period)

- Tape and scissors

PRロBLEM：

You＇ve discovered a problem with the crime scene photos from a recent case．Someone hastempered with the crime scene．See how many differences you can spot between the two photographs of the same crime scene．

ロNLINE ACTIVITY：

This a ctivity is a va ilable on－line at： http：／／forensics．rice．edu／html／comparison．html

TEACHER NロTES：

Photography is an essential part of crime scene processing．A crime scene investigator may take several hundred，or even several thousand photographs at a crime scene．The photos can provide key evidence as to the placement of certain pieces of evidence and their appearance before a nalysis．In addition，the photographsestablish a chronology of how the crime scene was processed．

MATERIALS：

CLASSRロロM MANAGEMENT：

This activity can also be done as a classroom activity． Instruct the students to memorize the position of all the objects in the classroom．Then have several of the students step out of the classroom．While they are gone， move some of the objects in the room．When they retum they must identify what has changed．Repeat until all students have had a tum．

For more activities like this，go to
http：／／spotthedifference．com

3II I－WITpness

PRロBLEM：

You were the principle crime scene investigator on a case two years ago．It is now time for you to testify in court about your findings．The defense attomey challenges the accuracy of your testimony and implies that your observational skills are not so great．If he can show the jury you are not good at spotting details，he might have chance of getting his client off．

It is often the case in real life situation that the credibility of expert witness testimony is challenged．The thoroughness with which they do their jobs is critic al．

Can you prove your observational skills are excellent？

ロNLINE ACTIVITY：

This a ctivity is a vailable online at： http：／／forensics．rice．edu／html／picture＿begin．html

CLASSRロロM ACTIVITY：

Show a photograph to the students for a set period of time（usually 30 seconds to a minute）．Then remove the photograph and have them write down a description of the scene．Remind the students it is important to describe the overall appearance of the scene and as many details as they can remember．Some students may prefer to sketch the scene；others to make written descriptions．

TEACHER NロTES：

The purpose of crime scene photography is to give a documented record of the scene asit is observed．＿Everything＿ must be photographed，including overview shots of the entire scene，mid range pictures of important objects in context，and close－up shots of every piece of evidence（often from multiple angles and under various lighting conditions）．In court the photographertestifies about the pictures，explaining to the jury their relevance to the case and pointing out the important parts of each photograph．As this testimony can occurweeks，months，oreven years after the photos were taken，it is important forcrime scene investigators to have a keen sense of observation and a very strong memory．

MATERIALS：

Color copies or digital projections of an image．

CLASSRロロM MANAGEMENT：

This a ctivity could be completed individually or in pairs． Pairs of students could compare notes to see how different people observe and remember different details． In addition，it may be interesting to have the students evaluate each other＇s descriptions before they see the photograph again．Scientific studies have shown that eye－witness descriptions can be altered simply by disc ussing what they remember，or being presented with opposing memories．As the students try to reconcile any differences in their descriptions they may actually move a way from what was originally in the photograph．

Instead of having the students view a picture，you can also plan a classroom intemption for the students to view． Plan for a co－conspirator to create an unannounced scene in your classroom（a person searching for lost equipment， a visitor walks into the wrong classroom，etc．）Immediately afterwards，have the students write their own eye－witness accounts of what they saw．Have the students share their different accounts to see how they vary．

PRロBLEM：

A man is on trial for robbing a convenience store，and several witnesses report seeing him at the scene．During the trial，the defense sets up an experiment to discredit the eye－witness testimony．See how you do on this experiment．

ロNLINE ACTIVITY：

Have the students watch the video at
http：／／viscog．bec kman．uiuc ．edu／grafs／demos／15．html．
Tell the students that during the movie they are to count the number of times the team in white passes the ball to each other．Each student should count to his or her self and make no comments during the movie．

Afterwards，poll the students to see how many ＂saw something odd＂during the movie（don＇t be specific yet）．Some students will have seen the gorilla， and some students will have no idea what you are talking about．Be prepared to show the video again．

TEACHER NロTES：

The video was made as part of an experiment by Harvard professors Da niel Simons and Christopher Chabris designed to test peoples＂inattentional blindness．＂In the original study，only 42% of the people observing the video noticed the gorilla walking through the middle of the scene．

The purpose of this activity is to illustrate the unreliability of eye－witness testimony．People watching this video will either count the number of passes correctly and not see the gorilla，or see the gorilla but not count the correct number of passes（and in some cases，they will both miss the gorilla and incorrectly count the passes）．

Unreliable eye－witness testimony is an ongoing concem for law enforcement－many convictions that have been overtumed by DNA evidence were based on faulty witness testimony．It should be stressed most witnesses do not intentionally lie when on the witness stand－human observation is limited by memory，suggestion，a nd interpretation． Studies have shown that even the classic＂police line－up＂can mislead witnesses and even alter their memories．

The faultiness of eye－witness testimony strengthens the importance of forensic science in determining guilt and innocence．Whereas memoriescan be confused or altered，the evidence stays the same．

For further ac tivities of this nature we recommend：http：／／viscog．beckman．uiuc．edu／djs＿lab／demos．html

MATERIALS：

Ability to watch the described video

CLASSRロロM MANAGEMENT：

This activity can be done with the students at multiple computers，or the video can be shown to the whole class on one large screen（make sure the students are silent during the video）．If the later option is chosen，the teachercan follow up with various oral questions for discussion，orcan ask the students to each write down the a nswers to the questions（or simply ask the students to ＂write a brief description of what you saw in the video＂）．

PRロBLEM：

A large mortgage company suspects one of its loan offic ers is preparing fraudulent loan a pplications and pocketing the money．They are not sure which officer is involved although they believe they have na rowed it down to three individuals：Cameron Robinson，Luis Rothstein，and Amanda Remillard．However，the culprit leamed of the company＇s suspicions and shredded the evidence！Your lab has been asked to assist in reconstructing the evidence and determine which of the three suspects is guilty of the fraud．

ACTIVITY：

PRE－CLASS PREPARATIO N：

The following pages are documents that have been ＂recovered＂from the offic es of the mortgage company． They include： 4 shredded loan applications，an e－mail describing the purchase of several stolen identities，and a partial list of the stolen identities．These documents need to be photocopied，then individually shredded （either by hand or by using an electric paper shredder）． Place the remains of each individual sheet in a separate plastic bag．

IN THE CLASSROOM：

Give each student or group of students a plastic bag containing a shredded document．Supply the students with tape to preserve their document once it has been reassembled．（Note：In our testing，it took an average of 15 minutes to reassemble the documents using a standard elec tric strip shredder．Cross－cutting shredders are NOTrecommended．）

Once AL documents have been pieced together，students will need to exa mine all of them to piece together the entire puzzle．No one document is enough to incriminate a ny of the suspects．However， after reviewing all 6 documents，students should be able to reconstruct the crime and answer the questions on page two of the student worksheet．

TEACHER NロTES：

This is a good exercise to emphasize the attention to detail，patience，and accuracy that are required by many forensic careers．Things don＇t happen nearly as quic kly in real life as they do on television．In this instance，this is a real case from a document examiner．IMPORTANT：ALI IDENTITIES ON THESE DOCUMENTS ARE C OMPLEIELY FIC TITIO US！

MATERIALS：

－Shredded documents
－Tape
－Plastic Bag

CLASSRロロM MANAGEMENT：

Students can work individually or in teams．The activity begins with having each student or group of students reconstruct a single sheet of paper．In the second part of the activity，the different pages must be a nalyzed by all members of the class．The reconstructed documents can be placed in a central＂viewing＂location or photocopied so that each student has his or her own copy．

Subject: RE: ID Auction Listing
From: <HaXrUs> anonymous@advicebox.com
Date: Saturday 26 May 2007 16:24:22-0500
To: "MoneyMaster" mm@pookmail.com
Payment received!
These IDs are fresh, so no one should notice anything wrong for at least a couple of weeks. Use them wisely, and remember-If anyone ever comes asking about these, you never heard of me!

ATTACHMENTS:

ID_List.xIs	Content-Type: Content-Encoding:	application/zip base64

-------Original Message------
Subject: RE: ID Auction Listing
From: "MoneyMaster" mm@ pookmail.com
Date: Friday 25 May 2007 16:24:22-0500
To: <HaXrUs> anonymous@advicebox.com
HaXrUS,

Won your auction on IdentityAction.info. I need the list of stolen IDs delivered ASAP—big deals in the works.

8LIL－8t－989	6961／L／6	6L6t－s98－s09	$180<8$	WN	seun ${ }^{\text {so }} 7$	әиеך suemdeuつ でくて	иешлә｜｜ә才｜	\forall	әэиәлеノつ	91
เعZL－七6－เعレ	عL6L／EL／8	86とて－七GL－L16	とカくトレ	人N	uołbu！̣unh	әиหך ¢ıəן	иоsuyor	प	exne7	St
LटE9－てL－90t	Et61／6z／L	6乙¢ı－L89－0L乙	1002t	人V	чeonped	әиеך sәмоу เ90ع	uosoees｜	\exists	esoy	カレ
St6t－E0－9c9	6961／92／01	Lて80－てカち－t98	0ヶ962	OS	イəəseヨ		180H	\forall	K\｜OH	$\varepsilon 1$
ES09－GG－ZLS	0961／ZZ／L	99L6－て98－916	01996	$\forall \bigcirc$	$\begin{aligned} & \text { s+4б!ə } \\ & \text { sni!! } \\ & \hline \end{aligned}$	әэセגә」 pue｜poom 6Sc	Нәуэ¢Н	\exists	иоぇәшеう	21
乙L6L－ヤع－SL0	6L6 $1 / 6 /$ L	SS8t－6LE－ZLZ	O1001	人N		peoy mnuxe」 $20 \angle 8$	イел	\pm	91，	12
18L6－88－乙¢0	عL6ト／Lて／レト	E8LL－tGZ－tLL	08L乙	$\forall W$	uofuneı		səןとzuov	\forall	səuб̂	O1
てちて0－カレ－G9く	LS6L／OL／L	St99－て19－08ヶ	ع00¢8	Z V	x！uәoud	łəอ入łS әр！SI！！ 678	moxe」	M	$!\mathrm{UO}$	6
H6く－8L－98G	0L6L／0乙／E	8L80－6LG－を¢	88186	$\forall M$	е！！муп＿		биоןə๐	W	ธәрецэ	8
06Lて－¢0－68を	6961／9／E	¢069－0¢L－z92	LSIES	IM		łəәıłS 4dəso¢ 269	uerojojo	r	ueas	L
ヤ888－ヤ8－ヤ0¢	S961／9／L	て\＆0L－レヤて－S09	$\dagger 01 \angle G$	OS			ィәииоว	\wedge	＾əכuədS	9
GLEG－tL－LLZ	ع86 L／EZ／t	002¢－とદと－0tt	9トレカt	HO	$\begin{array}{r} 1 ə \wedge!y_{1} \\ \text { Куэоч } \end{array}$	әл！п рıеイәи！＾698t	еपО	\wedge	イpoう	G
Lナト8－08－0ヤ0	ES6L／G／OL	ャレ90－ャ8て－098	乙¢09	10	¢0ł6u！	1．これıS みен 886ヶ	ィәиеう	\square	euew	†
69\＆ん－で－010	696 $\mathrm{L} / \mathrm{E} / \mathrm{L}$	て乙乙と－19t－80G	LてLて	$\forall W$	uolsog S	łəə入1S UOSn6ıə」	umosg	W	Kıə	ε
0980－ヶ¢－G1ト	てヤ61／とเ／01	عと6て－60¢－ャレ6	S0001	人N	Y10 ${ }^{\text {M }}$ M ${ }^{\text {N }}$	ıoqe」 lunow 629	sıəәg	\square	d！！！${ }^{\text {d }}$	乙
8LH－8t－989	6961／L／6	6L6t－S98－S0G	$180<8$	WN	seun7 ${ }^{\text {so7 }}$	әиеך suemdeuつ てトして	su！yt \forall	\forall	әэиәл৷О	1
\＃SS	Керपम！़		әр00¢！${ }^{\text {a }}$	J7els	K！！		$\frac{\overline{\partial w e n}}{\overline{7587}}$	$\frac{\text {｜e！！t］}}{\text { गрp！n }}$	$\overline{\overline{\text { anen }}}$	

риеן．ıə

Residence for Life, Ltd., Home Mortgage Application

This application is designed to be completed by the applicants) with the Lender's assistance. Applicants should complete this form as "Borrower" or "Co-Borrower," as applicable. Co-Borrower information must also be provided when either the income or assets of a person other than the Borrower (including the Borrower's spouse) will be used as a basis for loan qualification or the income or assets of the Borrower's spouse or other person who has community property rights pursuant to state law will not be used as a basis for loan qualification, but his or her liabilities must be considered because the spouse or other person has community property rights pursuant to applicable law and Borrower resides in a community property state, the security property is located in a community property state, or the Borrower is relying on other property located in a community property state as a basis for repayment of the loan.

Loan Applicant

SSA:	Home Phone \#:		
	$530-56-2914$	\quad	775-830-3195
:---			

Loan Co-Signer

Each of the undersigned specifically represents to Lender and to Lender's actual or potential agents, brokers, processors, attorneys, insurers, servicers, successors and assigns and agrees and acknowledges that the information provided in this application is true and correct as of the date set forth opposite my signature and that any intentional or negligent misrepresentation of this information contained in this application may result in civil liability, including monetary damages, to any person who may suffer any loss due to reliance upon any misrepresentation that I have made on this application, and/or in criminal penalties including, but not limited to, fine or imprisonment or both under the provisions of Title 18, United States Code, Sec. 1001, et seq.

Applicant's Signature

Co-Signer's Signature

Carunatz AhLizdon
Mortgage Broker's Signature
May 27, 2007
Date

Residence for Life, Ltd., Home Mortgage Application

This application is designed to be completed by the applicant(s) with the Lender's assistance. Applicants should complete this form as "Borrower" or "Co-Borrower," as applicable. Co-Borrower information must also be provided when either the income or assets of a person other than the Borrower (including the Borrower's spouse) will be used as a basis for loan qualification or the income or assets of the Borrower's spouse or other person who has community property rights pursuant to state law will not be used as a basis for loan qualification, but his or her liabilities must be considered because the spouse or other person has community property rights pursuant to applicable law and Borrower resides in a community property state, the security property is located in a community property state, or the Borrower is relying on other property located in a community property state as a basis for repayment of the loan.

Loan Applicant

Loan Co-Signer

Name: James H. Morris	DOB: $7 / 18$	7/18/47
653 Harper Street		Sex: M
City: Adairville	State: KY	ZIP: 42202
SSN: $400-05-2514$	Home Phone \#: $270-539-5753$	

Each of the undersigned specifically represents to Lender and to Lender's actual or potential agents, brokers, processors, attorneys, insurers, servicers, successors and assigns and agrees and acknowledges that the information provided in this application is true and correct. I agree to submit to a backgound and credit check as part of the mortgage application process. I acknowledge that any intentional or negligent misrepresentation of this information contained in this application may result in civil liability, including monetary damages, to any person who may suffer any loss due to reliance upon any misrepresentation that I have made on this application, and/or in criminal penalties including, but not limited to, fine or imprisonment or both under the provisions of Title 18, United States Code, Sec. 1001, et seq.

Mortgage Broker's Signature
May 28, 2007
Date

Residence for Life, Ltd., Home Mortgage Application

This application is designed to be completed by the applicants) with the Lender's assistance. Applicants should complete this form as "Borrower" or "Co-Borrower," as applicable. Co-Borrower information must also be provided when either the income or assets of a person other than the Borrower (including the Borrower's spouse) will be used as a basis for loan qualification or the income or assets of the Borrower's spouse or other person who has community property rights pursuant to state law will not be used as a basis for loan qualification, but his or her liabilities must be considered because the spouse or other person has community property rights pursuant to applicable law and Borrower resides in a community property state, the security property is located in a community property state, or the Borrower is relying on other property located in a community property state as a basis for repayment of the loan.

Loan Applicant

SSA:	Home Phone \#:

040-80-8147
860-284-0614

Loan Co-Signer

SSA:	Home Phone \#:				
	$115-64-0860$	$914-509-2933$			

Each of the undersigned specifically represents to Lender and to Lender's actual or potential agents, brokers, processors, attorneys, insurers, servicers, successors and assigns and agrees and acknowledges that the information provided in this application is true and correct as of the date set forth opposite my signature and that any intentional or negligent misrepresentation of this information contained in this application may result in civil liability, including monetary damages, to any person who may suffer any loss due to reliance upon any misrepresentation that I have made on this application, and/or in criminal penalties including, but not limited to, fine or imprisonment or both under the provisions of Title 18, United States Code, Sec. 1001, et seq.

Maria D. Canter

Applicant's Signature

Co-Signer's Signature

May 27, 2007
Date

Residence for Life, Ltd., Home Mortgage Application

This application is designed to be completed by the applicant(s) with the Lender's assistance. Applicants should complete this form as "Borrower" or "Co-Borrower," as applicable. Co-Borrower information must also be provided when either the income or assets of a person other than the Borrower (including the Borrower's spouse) will be used as a basis for loan qualification or the income or assets of the Borrower's spouse or other person who has community property rights pursuant to state law will not be used as a basis for loan qualification, but his or her liabilities must be considered because the spouse or other person has community property rights pursuant to applicable law and Borrower resides in a community property state, the security property is located in a community property state, or the Borrower is relying on other property located in a community property state as a basis for repayment of the loan.

Loan Applicant

SSN:

Home Phone \#:
262-730-5905

Loan Co-Signer

Each of the undersigned specifically represents to Lender and to Lender's actual or potential agents, brokers, processors, attorneys, insurers, servicers, successors and assigns and agrees and acknowledges that the information provided in this application is true and correct as of the date set forth opposite my signature and that any intentional or negligent misrepresentation of this information contained in this application may result in civil liability, including monetary damages, to any person who may suffer any loss due to reliance upon any misrepresentation that I have made on this application, and/or in criminal penalties including, but not limited to, fine or imprisonment or both under the provisions of Title 18, United States Code, Sec. 1001, et seq.

Applicant's Signature

Mortgage Broker's Signature
June 4, 2007
Date

A HロபSEDIVIDED
STUDENT ACTIVITY WロRKGHEET

THE CASE:

Residence for Life, Ltd., a large mortgage company, suspects one of its loan offic ers is preparing fraudulent loan applications and pocketing the money. They are not sure which offic er is involved although they believe they have na rrowed it down to three individuals: Cameron Robinson, Luis Rothstein, and Amanda Remillard. However, the culprit leamed of the company's suspicions and shredded the evidence! Your lab has been asked to assist in reconstructing the evidence and determine which of the three suspects is guilty of the fraud.

PART QNE: RECQNSTRUCT THE EVIDENCE

You will be provided with a bag of evidence containing one shredded document recovered from the offices of Residence for Life. You will need to carefully rec onstruct the evidence so it can be a nalyzed. Use scotch tape to preserve the evidence so it can be presented in court. Once your document has been restored, answer the following questions:

1. What type of document is it?

Answers to this will vary, depending on if the students were given a loan application, the incriminating e-mail, or the list of stolen identities

2. Do any of the suspects' names appearon this document?

The suspects names (Cameron Robinson, Luis Rothstein, and Amanda Remillard) appear on the bottom of the four loan applications (Cameron and Luis each have one; Amanda has two). Their names do not appear on the \mathbf{e}-mail or the list of identities.

3. Does this doc ument inc riminate a suspect in any way? Which one? How?

Individually, none of the documents incriminates any of the suspects, though many students will begin to have suspic ions and theories at this point

TEACHER ANSWER SHEET

A HロபSE DIVIDED
Student Activity Warksheet

THE CASE:

Residence for Life, Ltd., a large mortgage company, suspects one of its loan officers is preparing fra udulent loan applications and pocketing the money. They are not sure which officer is involved although they believe they have na rowed it down to three individuals: Cameron Robinson, Luis Rothstein, and Amanda Remillard. However, the culprit leamed of the company's suspicions and shredded the evidence! Your lab has been asked to assist in reconstructing the evidence and determine which of the three suspects is guilty of the fraud.

PART TWQ: THE BIG PICTURE

Once all the documents have been recreated, they need to studied forclues. Examine all the documents recovered from the mortgage company forevidence and to determine the identity of the fraudulent loan officer.

1. Whic h doc ument(s) seem partic ularly suspic ious or inc riminating?

The e-mail message implies that illegal activities are oc cuming-the hidden activities, the odd times, the instruction not to leave a paper trail. Some students may also wonder why a "confidential" list of people from a bank would be at a mortgage company.
2. Do any names appear on more than one document?

Four of the names from the list appear as Loan signers and co-signers on Amanda Remilliard's loan applic ations.

3. Who do you think is the culpnit? Why?

Amanda Remilliard is the culprit It is very suspicious that people from the Bank of Summerland should be filling out her loan application as both signers and co-signers. Also, some students may notice that the signatures of Amanda's doc uments bear an interesting resemblance to her own signature (though they are not identical).

4. Explain how the suspect was stealing from the mortgage company.

Amanda Remilliard purc hased a list of stolen identities from the blackmarket auction site IdentityAction.info. She used the identities from this list to submit false loan applications. Once these applications were approved, she kept the money for herself.

A HロபSE DIVIDED
 Student Activity Warksheet

THE CASE:

Residence for Life, Ltd., a large mortgage company, suspects one of its loan officers is preparing fraudulent loan applications and pocketing the money. They are not sure which offic er is involved although they believe they have narrowed it down to three individuals: Cameron Robinson, Luis Rothstein, and Amanda Remillard. However, the culprit leamed of the company's suspicions and shredded the evidence! Your lab has been asked to assist in reconstructing the evidence and determine which of the three suspects is guilty of the fraud.

PART ロNE: RECDNSTRUCT THE EVIDENCE

You will be provided with a bag of evidence containing one shredded document recovered from the offices of Residence for Life. You will need to carefully rec onstruct the evidence so it can be analyzed. Use scotch tape to preserve the evidence so it can be presented in court. Once your document has been restored, answer the following questions:

1. What type of document is it?

2. Do any of the suspects' names appearon this doc ument?

3. Does this document incriminate a suspect in any way? Which one? How?

A HロபSE DIVIDED
 Student Activity Warksheet

THE CASE:

Residence for Life, Ltd., a large mortgage company, suspects one of its loan officers is preparing fraudulent loan applications and pocketing the money. They are not sure which officer is involved although they believe they have narrowed it down to three individuals: Cameron Robinson, Luis Rothstein, and Amanda Remillard. However, the culprit leamed of the company's suspicions and shredded the evidence! Yourlab has been asked to assist in reconstructing the evidence and determine which of the three suspects is guilty of the fraud.

PART TWロ: THE BIG PICTURE

Once all the documents have been recreated, they need to studied forclues. Examine all the documents recovered from the mortgage company for evidence and to determine the identity of the fra udulent loan officer.

1. Whic h doc ument(s) seem partic ularly suspic ious or inc riminating?

2. Do any names appear on more than one document?

3. Who do you think is the culprit? Why?

4. Explain how the suspect was stealing from the mortgage company.

PRロBLEM：

A local convenience store was robbed by a masked gunman．He did not speak but handed the clerk a note that said＂Give ME all yuor Money！！！＂There were no witnesses a nd the clerk cannot remember any identifying features about the gunman．The investigators have requested the lab examine the note for any identifying information．

ACTIVITY：

PRE－CLASS PREPARATION：

Layer one sheet of paper on top of a nother．Bearing down very hard，write the following（in printed letters）：

J immy－
Call Mom（856－348－1971）

Remove the top sheet of paper．On the second sheet write：

Give ME all yuor Money！！！

This will have to be repeated enough times so that each student or group of students will have a note to a nalyze．Slight variations can be introduced between the notes，both in the written demand and the personal information．

IN THE CLASSROOM：

Each student or group of students should have their own＂note＂and a fla shlight．Instruct the students to use the flashlight to see if they can unc over a ny identifying information from the note．

If the flashlight is held at an oblique angle（close to and nearly parallel to the paper），the indented writing （with the name and phone number）will be clearly visible．

TEACHER NロTES：

Analysis of indented writing has proven useful in a number of criminal cases．It has been used to discover personal information（as seen here），to match documents found at a crime scene to paperata suspect＇s home or place of work，to permit handwriting a nalysis of larger samples，etc．

Oblique lighting a llows us to see the small indentations in the surface of the paper because they produce shadows with greater contrast than the indentations themselves．The small angle of the light results in longer shadows that are easier to see and photograph．A questioned documents lab is often equipped with mic roscopes with digital cameras and pre－positioned oblique lighting sources to aid in conducting these types of exercises．

Another method of detecting indented writing is to use an Electrostatic Detection Apparatus（EDSA），which gives the papera slight charge of static electricity．The page is placed under a thin cellophane film，charged，then lightly dusted with black toner powder．Since the electrical charge will be higher in the indented areas，the toner sticks better to these area，making the writing legible．

MATERIALS：

－Bank robbery note with indented writing revealing personal information（one perstudent）
－Flashlight（one per student）

CLASSRロロM MANAGEMENT：

This activity can be performed either by individual students or in small groups．

Given the simplic ity in setting up this exercise， students may be interested in devising their own
scenarios and notes．This could easily be tumed into a reciprocal activity where students create their own documents（criminal or otherwise）with indented writings， then exchange with a classmate so that each may decipher the others．

Students may also want to experiment with this tec hnique to determine how and when it is most effective．For example，how fardown in a stack of paperscan a note written on the top one be read？ Does this tec hnique work better on certa in types of papers than on others？Can some other method be used to read the indented writing（e．g．using silly putty to create a mold of the impression，which works well with cardboard）．

PRロBLEM:

Local police were called to the scene of a caraccident late last night when a newly-purc hased carcollided with a street light at the intersection of North and Main. By the time the police a mived the driver had fled the scene. The police couldn't find any witnesses.

The Crime Scene Investigation team wascalled out to collect evidence. They collected the following:

- Glass fragments from the front seat of the car
- Glass fragments from a round the outside of the car.
- Blood on the broken windshield of the car
- Fingerprints on the outer door ha ndle
- Fingerprints on the steering wheel
- Footprints in the mud under the street light.

Police traced the carback to a local dealership, where the salesman identified the owner of the vehic le-a Mr. J ames Hatfield, who lives with his wife, J oanne Hatfield, 2 miles from the scene of the accident. When the police questioned Mr. Hatfield, he said hiscar had been stolen earlier that evening, but he had not yet filed a formal report. Mr. Hatfield claimed he saw his neighbor, Mr. Winston McCoy, use a coat-hanger to break into his car earlier that evening. It a ppears Hatfield and McCoy have been feuding with each other for many months, and the police have been called out on several occasions.

The police questioned Mr. McCoy regarding the matter. Despite his several complaints a ga inst Mr. Hatfield and his obvious jealousy over the new car, Mr. McCoy maintains he did not steal the car-he just scratched the exterior paint with a key. He claims he never entered the vehicle.

Police officers were able to obta in DNA samples from both Mr. Hatfield and Mr. McCoy. Mrs. Hatfield refused to give police a DNA sample, but she did allow herself to be fingerprinted along with both men.

Your company, Diagnostic Forensic Solutions, has been asked to analyze the evidence forthe local police department. You've been asked to 1) prepare an invoice describing which forensic analyses you recommend performing on the given evidence and 2) write a summary report describing the results of the experiments and your interpretation. The police department has a budget of $\$ 2,000$ for this investigation.

ACTIVITY:

Students are provided with a blank invoice outlining the available forensic procedures and their costs. Due to the budget constraint, students will not be able to order every possible forensic a nalysis. Instead, they must choose which test they feel will be most relevant to the investigation.

Once the invoice has been submitted, students are provided with the appropriate results. (NOTE: students are only given the results of the a nalyses they order). The results of all the a nalyses are given on the following pages. They should be photocopied onto separate sheets of paper.

We've provided test results for two different cases. You may want to have students try case 1 first; then the more diffic ult case 2 . Both involve the same basic facts of the crime. In the first (marked Case No.1) there is a clearculprit who committed the crime, and all the tests implic ate this man. In the second scenario (marked Case No.2) the evidence isn't as revealing, and the students' interpretations will likely depend on which tests they elect to perform. In the second scenario many different interpretations are possible depending on the students' creativity. It is up to the teacher to decide the relative ment of each individual solution. Altematively, the solutions may be shared with the whole class and discussed as to which is more plausible.

Once the students have obtained the results, they writeup a summary report describing:

- The tests they ordered
- The results of those tests
- Which suspects, if a ny, are implic ated or exonerated by those results
- Their interpretation of how the crime occured

TEACHER NロTES：

This exerc ise simulates the actual workings of a private forensic slaboratory．It is designed to demonstrate the effects of real－world economic constraints on criminal investigations．Providing a set budget limits the number of forensic analyses that can be performed，so students must weigh the relative menits of each a nalysis and determine which ones will provide the most relevant information．

The two scena rios provided with this exercise both reflect real life possibilities．Often the evidence conclusively incriminates one suspect，and the case is brought to a swift and successful close．Sometimes，however，the evidence is not strong enough to convict a suspect，a case must be solved through further a nalysis a nd police work．Not every case can be solved as quickly as it is on television．

MATERIALS：

None

CLASSRロロM MANAGEMENT：

This activity can be completed individually，but having the students work in small groups will foster interac tivity and debate．There are several possible correct ways to camy－out this a ssignment，and the student may enjoy debating the ments of their various solutions．

It is suggested the assignment conclude with each student or group of students sha ring their own interpretation of the crime．Additionally，several questions are included below which can be discussed among the class as a whole．

1．How did the analysis you choose to perform effect your interpretation of the crime？
2．Would having more money have affected yourfinal interpretation？
3．Is it realistic to spend a large amount on every case the police investigate？
4．What should detemmine how much money gets spent on each investigation？

I. FACILITIES AND LABOR

ITEM		RATE	NUMBER	TOTAL	
FaCilities	\$	300/DAY	1	\$	300
Protective Equipment	\$	20/DAY	1	\$	20
Testimony	\$	300/DAY	1	\$	300
Clerical Support	\$	60/DAY	1	\$	60
Forensic Scientist labor	\$	50/DAY	4	\$	200
Travel time	\$	500/DAY		\$	

II. INDIVIDUAL ANALYSES

**The fee for each test will include analysis of AL the pieces of evidence of that nature.

ITEM	RATE	NUMBER	TOTAL	
A. DNA ANALYSIS (4 HOURS/analysis)	\$300/ANALYSIS		\$	
DNA SAMPLES FROM blood, Saliva, etc, are Compared against each other and Codis database.				
B. Fingerprint Comparison (2 HOURS/ANALYSIS)	\$300/ANALYSIS	1	\$	300
COMPARISON OF PROVIDED PRINTS AGAINST ONE ANOTHER AND AGAINST ENTIRE IAFIS DATABASE.				
C. GLASS ANALYSIS (1 HOUR/analysis)	\$ 150/ANALYSIS	1	\$	150
Glass fragments are analyzed to determine origin, any Chemical treatments, etc.				
D. TOOLMARK COMPARISONS (2 HOURS/ANALYSIS)	\$200/ANALYSIS		\$	
SCRATCHES OR INDENTATIONS CAN BE MATCHED TO THE SPECIFIC TOOL THAT MADE THEM.				
E. TOXICOLOGY ANALYSIS (4 HOURS/analysis)	\$300/ANALYSIS		\$	
BLOOD, URINE, AND OTHER BIOLOGICAL MATERIALS ARE TESTED FOR ALCOHOL, DRUGS, AND OTHER SUBSTANCES.				
F. IMPRESSION EVIDENCE ANALYSIS (1 HOUR/ANALYSIS)	\$ 150/ANALYSIS	1	\$	150
FOOTPRINTS ARE COMPARED AGAINST POSSIBLE SOURCES BASED ON CLASS AND INDIVIDUAL CHARACTERISTICS.				
	SUBTOTAL		\$	1480
	PROFIT MARG	(30%)	\$	444
	Grand TOTA		\$	1924

TEACHER ANSWER KEY

DIAGNQSTIC FQRENSIC SQLUTIQNS, INC. STUDENT ACTIVITYWロRKSHEET

1. Look over the list of evidence collected from the crime scene. What evidence do you think is most important to the investigation? Why?

The blood and fingerprints can tell us who was in the car. The footprints can tell us who was at the scene of the crash. The glass fragments aren't as interesting since they probably come from the broken windshield.
2. Diagnostic Forensic Solutions, Inc. requires that all clients must purchase facilities, protective equipment, testimony, and clerical support. Are there any other facilities or labor the local police need to purchase? How much money is left to for running analyses?

Since this is a local job, travel should NOTbe required. However, the client will be required to pay for forensic labor. How many hours they should pay for depends on how many and what kind of analyses are ordered.
3. Which of the following a nalyses would you suggest the police purchase for this investigation? Foreach one, expla in what you think it will reveal about the crime.

DNA a nalysis - should purchase; could tell whose blood is on the windshield.

Fingerprint Comparisons - should purc hase; could tell who opened the door and who was driving the car (whose fingerprints were on the steering wheel).

Glass Analysis - should NOTpurchase; could tell us where the class came from inside and outside of the car(but probably came from windshield).

Toolmark Comparisons - should purc hase; c ould determine if Mr. McCoy really did scratch the car with a key and/or if a coat hanger was used to break into the car.

Toxicology Analysis - should NOTpurchase; could tell us if the person who left their blood on the windshield had any chemic als in their body (but no indication drugs had a role in the crime).

Impressing Evidence Analysis - should purchase; could tell us whose footprints are at the scene of the crime under the street light
4. Complete the invoice on the next page and submit it to your teacher. If he or she approves your invoice, you will leam the results of the tests you have ordered. Remember-you have a strict budget of \$2000.

TEACHER ANSWER KEY

DIAGNロSTIC FQRENSIC SQLUTIQNS, INC. STUDENT ACTIVITYWロRKSHEET

After your proposal has been approved, you will leam the results of the forensic a nalyses you ordered.
Write a letter to the Chief of Police explaining:

- Which analyses that were performed, and their results
- Whether these results incriminate or exonerate any of the suspects
- Whether any further analyses need to be performed, and why
- Your interpretation of how the crime occ ured.

For the first crime-

No matter which tests the students chose to run, all test results should inc riminate Mr. Hatfield. The interpretations as to how the crime occ urred may vary, but they should all explain how his fingerprints, blood, and shoe prints wound up at the crime scene.

Sample scenario: Mr. Hatfield lied when he said he saw his neighbor break into his car. He did, however, see the damage Mr. McCoy did when he used a key to scratch the outside surface. Mr. Hatfield then concocted a plan. He decided he would frame Mr. McCoy for the theft of his new car, then sue him for the money to buy a new, non-sc ratched up vehicle. Mr. Hatfield purposely crashed his own car into the light pole, then calmly walked a way from the scene (unknowingly leaving behind incriminating evidence) and waited for the police to call him so he could blame his neighbor for stealing the car.

For the sec ond crime-

Whether any suspects are inc riminated of exonerated depends on which tests the students elected to run. Any interpretation should be considered viable so long as it explains the results of any analyses the students chose to run.

Sample scenario: Mr. McCoy did scratch the outside door with a key, but Mrs. Hatfield did not notice before she drove off to her weekly BINGO game that night As she was driving home later that evening she swerved to avoid a cat in the road and lost control of her vehicle. She crashed into the street light. She called her husband for help, but when he anived they couldn't get the cardoor open. Mr. Hatfield used a coathanger to open the door and free his wife. They decided to flee the scene and claim the carhad been stolen in order to get money from the insurance company.

DIAGNQSTIC FQRENSIC SQLUTIGNS, INC. STUDENT ACTIVITY WロRKSHEET

PART 1: THE EVIDENCE

Local police were called to the scene of a caraccident late last night when a newly-purchased carcollided with a street light at the intersection of North and Main. By the time the police a mived the driver had fled the scene. The police couldn't find any witnesses.

The Crime Scene Investigation team wascalled out to collect evidence. They collected the following:

- Glass fragments from the front seat of the car
- Glass fragments from a round the outside of the car.
- Blood on the broken windshield of the car
- Fingerprints on the outer door handle
- Fingerprints on the steering wheel
- Footprints in the mud under the street light.

Police traced the carback to a local dealership, where the salesman identified the owner of the vehicle-a Mr. J ames Hatfield, who lives with his wife, J oanne Hatfield, 2 miles from the scene of the accident. When the police questioned Mr. Hatfield, he said his car had been stolen earlier that evening, but he had not yet filed a formal report. Mr. Hatfield claimed he saw his neighbor, Mr. Winston McCoy, use a coat-hanger to break into his carearlierthat moming. It appears Hatfield and McCoy have been feuding with each otherformany months, and the police have been called out on several occasions.

The police questioned Mr. McCoy regarding the matter. Despite his several complaints against Mr. Hatfield and his obvious jealousy over the new car, Mr. McCoy maintains he did not steal the car-he just scratched the exterior paint with a key. He claims he never entered the vehicle.

Police officers were able to obta in DNA samplesfrom both Mr. Hatfield and Mr. McCoy. Mrs. Hatfield refused to give police a DNA sample, but she did allow herself to be fingerprinted along with both men.

Your company, Diagnostic Forensic Solutions, has been brought in to analyze the evidence forthe local police department. Before you can begin work the police department needs to approve the funding for your tests. They only have $\$ \mathbf{2 0 0 0}$ to spend on this investigation.

PART 2: THE RESULTS

After your proposal has been a pproved, you will leam the results of the forensic analyses you ordered.
Based upon the results of those tests, write a letter to the Chief of Police explaining:

[^0]

DIAGNOTIC FORENSIC SOLUTIONS, INC. INVOICE

I. FACILITIES AND LABOR

ITEM	RATE	NUMBER	TOTAL
FACilities	\$ 300/DAY	1	\$ 300
Protective Equipment	\$ 20/DAY	1	\$ 20
Testimony	\$ 300/DAY	1	\$ 300
Clerical Support	\$ 60/DAY	1	\$ 60
Forensic Scientist labor	\$ 50/DAY		\$
Travel time	\$ 500/DAY		\$

II. INDIVIDUAL ANALYSES

**The fee for each test will include analysis of AL the pieces of evidence of that nature.

ITEM	RATE	NUMBER	TOTAL
A. DNA ANALYSIS (4 HOURS/analysis)	\$300/ANALYSIS		\$
DNA SAMPLES FROM blood, SALIVA, ETC, ARE COMPARED AGAINST EACH OTHER AND CODIS DATABASE.			
B. Fingerprint Comparison (2 Hours/analysis)	\$300/ANALYSIS		\$
COMPARISON OF PROVIDED PRINTS AGAINST ONE ANOTHER AND AGAINST ENTIRE IAFIS DATABASE.			
C. GLASS ANALYSIS (1 HOUR/analysis)	\$ 150/ANALYSIS		\$
Glass fragments are analyzed to determine origin, any chemical treatments, etc.			
D. TOOLMARK COMPARISONS (2 HOURS/ANALYSIS)	\$ 200/ANALYSIS		\$
SCRATCHES OR INDENTATIONS CAN BE MATCHED TO THE SPECIFIC TOOL THAT MADE THEM.			
E. TOXICOLOGY ANALYSIS (4 HOURS/analysis)	\$300/ANALYSIS		\$
BLOOD, URINE, AND OTHER BIOLOGICAL MATERIALS ARE TESTED FOR ALCOHOL, DRUGS, AND OTHER SUBSTANCES.			
F. IMPRESSION EVIDENCE ANALYSIS (1 HOUR/ANALYSIS)	\$ 150/ANALYSIS		\$
FOOTPRINTS ARE COMPARED AGAINST POSSIBLE SOURCES BASED ON CLASS AND INDIVIDUAL CHARACTERISTICS.			
	SUBTOTAL		\$
	PROFIT MARG	N (30\%)	\$
	Grand TOTA		\$

DIAGNQSTIC FGRENSIC SQLUTIGNS, INC. STUDENT ACTIVITYWロRKSHEET

1. Look over the list of evidence collected from the crime scene. What evidence do you think is most important to the investigation? Why?
2. Diagnostic Forensic Solutions, Inc.requires that all clients must purchase facilities, protective equipment, testimony, and cleric al support. Are there any other facilities or labor the local police need to purchase? How much money is left to for running analyses?
3. Which of the following a nalyses would you suggest the police purc hase for this investigation? Foreach one, expla in what you think it will reveal about the crime.

DNA a nalysis-

Fingerprint Comparisons-

Glass Analysis -

Toolmark Comparisons-

Toxicology Analysis -

Impressing Evidence Analysis-
4. Complete the invoice on the next page and submit it to your teacher. If he or she approves your invoice, you will leam the results of the tests you have ordered. Remember-you have a strictbudget of $\$ \mathbf{2 0 0 0}$.

DNA ANALYSIS RESULTS:

DNA from the blood on the windshield was a match to the DNA sample provided by Mr. J ames Hatfield. All three samples (Mr. Hatfield, Mr. McCoy, and sample from windshield) were compared to the CODIS database, but no match was found.

INCORPORATED

FINGERPRINT CロMPARISロN RESULTS:

There were two fingerprints discovered on the door. One belonged to Mr. Hatfield, one belonged to Mr. McCoy. There were two additional fingerprints on the steering wheel-both belonged to Mr. Hatfield. All four prints were compared to the FBI's IARS database but no matches were found.

GLASS ANALYSIS RESULTS：

The glass fragments were equal in density and chemic al treatments to the type of glass used in the windshield for that particular car．Both the glass fragments inside the carand outside the carwere of the same type．
INCORPORATED

CASE NO．l

TロロLMARK CロMPARISロN RESULTS：
There were many scratches and dings on the outside of the car，mainly caused by the collision with the street light． There were several scratches on the outside of the carconsistent with damage from a key．These scratches had the same individual characteristics as a key in Mr．McCoy＇s possession．

CASE NO． 1

TロXICロLロGY ANALYSIS RESULTS：

The blood collected from the windshield was tested for the presence of alcohol，prescription drugs，and illegal drugs． All tests came back negative，indic ating the blood donor had no foreign substances in his or her blood stream．

CASE NO．l

IMPRESSIロN EVIDENCE RESULTS：

Impressions of the shoeprints collected from the crime scene were compared to shoes collected from the Hatfield and Mc Coy residences．The class characteristics of the footprints indicated they were made by a pair of men＇s size $\mathbf{1 0}$ Nike shoes．Mr．Hatfield owns such a pair of shoes．In addition，the individual characteristics from the footprint match those on the muddy pair of shoes found in his closet

CASE NO. ᄅ

DNA ANALYSIS RESULTS:
No match could be found between the three samples provided (Mr. Mc Coy, Mr. Hatfield, sample from crime scene). All three samples were compared to the CODIS database, but no match was found.

FINGERPRINT CロMPARISロN RESULTS:

There were two fingerprints discovered on the door. One belonged to Mr. Hatfield, one belonged to Mr. Mc Coy. There were two additional fingerprints on the steering wheel-one from Mrs. Hatfield and one that did not match any of the suspects' prints. All four prints were compared to the FBI's IARS database but no matches were found.

CASE NO． 2

GLASS ANALYSIS RESULTS：

The glass fragments were equal in density and chemic al treatments to the type of glass used in the windshield for that partic ular car．Both the glass fragments inside the carand outside the car were of the same type．
Incorporated

CASE NO．ᄅ

TロロLMARK CロMPARISロN RESULTS： There were many scratches and dings on the outside of the car，mainly caused by the collision with the street light There were several scratches on the outside of the carconsistent with damage from a key．These scratches had the same individual characteristics as a key in Mr．McCoy＇s possession．There were also scratches around the driver＇s side window consistent with using a coat hanger to open the door，but these marks could not be matched to any coat hangers in Mr．McCoy＇s house．

TロXICロLロGY ANALYSIS RESULTS：

The blood collected from the windshield was tested for the presence of alcohol，prescription drugs，and illegal drugs．
All tests came back negative，indic ating the blood donor had no foreign substances in his or her blood stream．
INCORPORATED

CASE NO．ᄅ

IMPRESSIロN EVIDENCE RESULTS：

Impressions of the shoeprints collected from the crime scene were compared to shoes collected from the Hatfield and McCoy residences．The class characteristics of the footprints indicated they were made by a pair of men＇s size $\mathbf{1 0}$ Nike shoes．Mr．Hatfield owns such a pair of shoes．However，there were not enough individual characteristics in the impression to make a positive identification．

ACTIVITY：

Five separate logic puzzles are presented on the following pages．These puzzes are of varying diffic ulty，but it is possible to figure out the solutions based solely on the clues provided in each puzzle．

TEACHER NロTES：

Forensic science relies on the art of induction－reasoning from the specific to the general．At a crime scene，forensic scientist collect many small clues or facts，from which they have to induce orfigure out a particular order of events or criminal scenario．Likewise，in order to solve these logic puzzles，students must take a set number of clues and details from them to determine certain identities a nd relationships．In addition，the logic puzzles may appeal to students＇ innate sense of challenge and curiosity．

MATERIALS：

Worksheets

CLASSRロロM MANAGEMENT：

The exercises are meant to be completed individually． Altematively，they can be used as homework assignments to get the students interested in forensic science and the CSI universe．

TEACHER ANSWER KEY

FRIENDS AND NEIGHBDRS

You've been asked to help layout a new forensic slaboratory for the local police department. For convenience sake, the director wants all the laboratories along the same hallway (see below). There are five different labs (Forensic Biology, Fingemrinting, Toxicology, Digital Forensics, and Firearms Examination). Each lab is run by a different specialist (Peggy, Sam, Maria, Danny, and Raymon) who have different preferences on where their lab is loc ated.

Given the following clues, can you determine 1)which specia list works in each lab and 2)how to lay out the labs to please everyone?

- Sam doesn't want his forensic biology lab to be at eitherend of the hallway
- Maria wants to be immediately to the right of the fingerprinting lab.
- The person who runs the toxic ology lab wants to be immediately left of Peggy's lab.
- Danny wants his lab somewhere right of the frearms examination lab, but he doesn't care where.
- The middle lab has to be either the digital forensics lab or the fingerprinting lab.

$\begin{aligned} & \text { LAB } \\ & \#_{1} \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \# 2 \end{aligned}$	LAB $\# 3$	LAB $\# 4$	$\begin{aligned} & \text { LAB } \\ & \# 5 \end{aligned}$
HALLWAY				

	LAB NAME	GPECIALIST
LAB \# 1	Fireams	Raymon
LAB \# 2	Forensic Biology	Sam
LAB \#3	Fingerprints	Danny
LAB \#4	Toxicology	Maria
LAB \#5	Digital Forensics	Peggy

FRIENDS AND NEIGHBORS

You've been asked to help layout a new forensic slaboratory for the local police department. For convenience sake, the director wants all the laboratories along the same hallway (see below). There are five different labs (Forensic Biology, Fingemrinting, Toxicology, Digital Forensics, and Firearms Examination). Each lab is run by a different specialist (Peggy, Sam, Maria, Danny, and Raymon) who have different preferences on where their lab is loc ated.

Given the following clues, can you determine 1)which specialist works in each lab and 2)how to lay out the labs to please everyone?

- Sam doesn't want his forensic biology lab to be at eitherend of the hallway
- Maria wants to be immediately to the right of the fingerprinting lab.
- The person who runs the toxic ology lab wants to be immediately left of Peggy's lab.
- Danny wants his lab somewhere right of the frearms examination lab, but he doesn't care where.
- The middle lab has to be either the digital forensics lab or the fingerprinting lab.

LAB \# 1	$\begin{aligned} & \text { LAB } \\ & \# z \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \# 3 \end{aligned}$	$\begin{gathered} \text { LAB } \\ \# 4 \end{gathered}$	$\begin{aligned} & \text { LAB } \\ & \text { \#5 } \end{aligned}$

	LAB NAME	GPECIALIST
LAB \# 1		
LAB \#2		
LAB \#3		
LAB \#4		
LAB \#5		

\qquad

FRIENDSANDNEIGHBロRS

		$\begin{aligned} & \text { N } \\ & \text { 들 } \\ & \text { O. } \\ & \text { © } \end{aligned}$			$\begin{aligned} & \text { 증 } \\ & \text { 음 } \\ & \text { 믕 } \end{aligned}$	-	¢	$\stackrel{\text { - }}{\substack{0}}$		
Lab \# 1										
Lab \#z										
Lab \#3										
Lab \#4										
Lab \# 5										
Pegey										
Sam										
MARIA										
DANNY										
RAYMIN										

TEACHER ANSWER KEY

든N VACATIロN

The Las Vegas CSIs have been working hard．They＇ve definitely eamed a rest．Five CSls（Grissom，Catherine， Nick，Sara，and Warick）put in for vacation time this month，each after they solved a different type of investigation（fraud，arson，murder，robber，hit－and－run）．Each person＇s vacation started at a different time，and each went to a different city（LosAngeles，San Francisco，Seattle，Denver，and Houston）．Finally，each person spent their vac ation doing a different activity（camping，hang－gliding，clubbing，fishing，or horseback riding）．

Given the following clues，can you determine when the CSls started their vacation，where they went，what they did，and which case they solved before they left？
－The five CSIs who went on vacation were：Catherine；the one who＇s going to Houston；the male lab member who likes to go hang－gliding；the CSI who＇s been working on a fraud investigation；and the female lab member who likes to go camping．
－Three weeks before Nick went on vacation，the CSI investigating the murder spent some time horseback riding．
－Grissom went on vacation two weeks before the male CSI who was working robbery case and one week after the CSI who solved her murder investigation．
－Warick and the CSI who took his vacation on the 9th both went to Califomia to relax．
－The CSI who went clubbing was on vacation before the CSI who went fishing，but neither went to Seattle or San Francisco．
－The CSI who went to Los Angeles solved either the fraud or the robbery case．He went on vacation two weeks before Sara went to Denver．
－The person who solved the arson case was on vacation when the hit－and－run occured．

DATE	CSI	CASE	LロCATIロN	ACTIVITY
$\mathbf{2}^{\text {ND }}$	Catherine	Murder	Seattle	Horseback Riding
$\mathbf{9}^{\text {TH }}$	Grissom	Arson	San Francisco	Hand－Gliding
$16^{\text {TH }}$	Wanick	Fraud	Los Angeles	Clubbing
$\mathbf{2 3 3 ^ { \text { RD } }}$	Nick	Robbery	Houston	Fishing
$\mathbf{3 \square ^ { \text { TH } }}$	Sara	Hit－and－Run	Denver	Camping

CSI ロN VACATIロN

The Las VegasCSls have been working hard．They＇ve definitely ea med a rest．Five CSIs（Grissom，Catherine， Nick，Sara，and Wamick）put in for vacation time this month，each after they solved a different type of investigation（fraud，arson，murder，robber，hit－and－run）．Each person＇s vac ation started at a different time，and each went to a different city（LosAngeles，San Francisco，Seattle，Denver，and Houston）．Finally，each person spent their vacation doing a different activity（camping，hang－gliding，clubbing，fishing，or horseback riding）．

Given the following clues，can you determine when the CSls started their vacation，where they went，what they did，and which case they solved before they left？
－The five CSIs who went on vacation were：Catherine；the one who＇s going to Houston；the male lab member who likes to go hang－gliding；the CSI who＇s been working on a fraud investigation；and the female lab member who likes to go camping．
－Three weeks before Nick went on vacation，the CSI investigating the murder spent some time horseback riding．
－Grissom went on vacation two weeks before the male CSI who was working robbery case and one week after the CSI who solved her murder investigation．
－Warick and the CSI who took his vacation on the 9 th both went to Califomia to relax．
－The CSI who went clubbing was on vac ation before the CSI who went fishing，but neither went to Seattle or San Francisco．
－The CSI who went to Los Angeles solved either the fraud or the robbery case．He went on vacation two weeks before Sara went to Denver．
－The person who solved the arson case was on vacation when the hit－and－run occured．

DATE	동	CASE	LロCATIロN	ACTIVITY
$2^{\text {ND }}$				
$9^{\text {TH }}$				
$16^{\text {th }}$				
$23^{\text {RD }}$				
$3 \square^{\text {H }}$				

\qquad

CSI ロN VACATIロN

			－	$\frac{.0}{\bar{Z}}$	$\begin{aligned} & \stackrel{\widetilde{W}}{\omega} \\ & \text { © } \end{aligned}$		$\begin{aligned} & \text { 을 } \\ & \text { 둔 } \end{aligned}$				$\begin{aligned} & \bar{\otimes} \\ & \stackrel{\rightharpoonup}{\mathrm{D}} \end{aligned}$		$\stackrel{\otimes}{\overline{\#}}$ \oplus \oplus \oplus		$\begin{aligned} & \frac{0}{0} \\ & \hline \mathbb{0} \\ & \frac{0}{4} \\ & \text { © } \end{aligned}$					은 응 응
2nd																				
9th																				
16th																				
23rd																				
30th																				
Camping																				
Hang－gliding																				
Horse－back Riding																				
Fishing																				
Clubbing																				
Denver																				
San Francisco																				
Seattle																				
Houston																				
Los Angeles																				
Hit－and－Run																				
Fraud																				
Arson																				
Robbery																				
Murder																				

TEACHER ANSWER KEY

Sロ Yロப WANT Tロ BE A CSI？

Grissom＇s been thinking about hiring a new CSI for histeam．The interviews started this week，and he＇s had some promising candidates．Four people applied forthe job．They all majored in different fields at different universities．In addition，each person had a different hobby that he or she talked about during the interview．

Using the clues below，can you determine the first and last names of the applicants，what school they graduated from，their major，and their hobby？
－The four people who interviewed were Teresa；the one who graduated from Rice University；an amateur astronomer，and a Political Science major．
－Neither the chemistry major nor the politic al science major went to Arizona State．The UNLV graduate couldn＇t stop talking about his stamp collection．
－Natalia didn＇t go to Notre Dame，and her last name isn＇t Curran．Sandeep＇s last name isn＇t Ranney．
－Ms．J ones can’t juggle．Ms．Ranney，who majored in English，has never been to a hockey game．
－The English major didn＇t go to Notre Dame，and John Garcia didn＇t go to Arizona State．
－The Arizona state graduate majored in biology while he was in college．
－Natalia didn＇t go to Notre Dame．Teresa didn＇t major in chemistry．

FIRST NAME	LAST NAME	COLLEGE	MAU日R	HOBBY
SANDEEP	Curan	Arizona State	Biology	Astronomy
NATALIA	Jones	Rice	Chemistry	Hockey
TERESA	Ranney	UNLV	English	Stamp Collecting
JIHN	Garcia	Norte Dame	Political Science	Juggling

Sロ Yロப WANT Tロ BE A CSI？

Grissom＇s been thinking about hiring a new CSI for histeam．The interviews started this week，and he＇s had some promising candidates．Four people applied for the job．They all majored in different fields at different universities．In addition，each person had a different hobby that he or she talked about during the interview．

Using the clues below，can you determine the first and last names of the applicants，what school they graduated from，their major，and their hobby？
－The four people who interviewed were Teresa；the one who graduated from Rice University；an amateur astronomer，and a Political Science major．
－Neither the chemistry major nor the politic al science major went to Arizona State．The UNLV graduate couldn＇t stop talking about his stamp collection．
－Natalia didn＇t go to Notre Dame，and her last name isn＇t Curran．Sandeep＇s last name isn＇t Ranney．
－Ms．J ones can＇t juggle．Ms．Ranney，who majored in English，has never been to a hockey game．
－The English major didn＇t go to Notre Dame，and John Garcia didn＇t go to Arizona State．
－The Arizona state graduate majored in biology while he was in college．
－Natalia didn＇t go to Notre Dame．Teresa didn＇t major in chemistry．

FIRST NAME	LAST NAME	CQLLEGE	MAJGR	HロBBY
SANDEEP				
NATALIA				
TERESA				
JIHN				

\qquad Date： \qquad

Sロ YロU WANT Tロ BE A CSI？

	$\begin{aligned} & \text { N } \\ & \text { W } \\ & \text { Z } \\ & 0 \end{aligned}$		$\begin{aligned} & Z \\ & \mathbb{\alpha} \\ & \frac{\alpha}{\alpha} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}$	$\begin{aligned} & \grave{\succ} \\ & \text { Z } \\ & \text { Z } \\ & \underset{\sim}{x} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \end{aligned}$	$\begin{aligned} & > \\ & \text { Z } \\ & \beth \end{aligned}$								
SANDEEP																
NATALIA																
TERESA																
JロHN																
AmAtEUR Astranamy																
Jugating																
Stamp Callecting																
Hackey																
ENGLISH																
Palitical Science																
Bialacy																
CHEMISTRY																
Arizona State																
Natre Dame																
RICE																
UNLV																

TEACHER ANSWER KEY

THE DロCTロR WILL SEE Yロப NロW

Doc Robbins has had a busy night．Six bodies have been delivered to the morgue－all at different times and with different causes of death．Using the following information，can you determine the first and last name of each person，the cause of death，and the order in which they a mived？
－The bodies anived in the following order．First was David；then Mr．Daniels；the man who died by electrocution；Phillippe；the hit－and－run casualty；and last was Mr．Archer．
－Sayid was not killed by electroc ution or by an aneurysm，but he did anive after Mr．Kein（who was also not elec troc uted）．
－Mr．Metzger（who came in before Wesley）was stabbed to death by a former business associate．
－Mr．Santos was not the victim of a hit－and－run，nor did he die of electrocution．
－Robert（who did not die by drowning or an aneurysm）is neither Mr．Chang nor Mr．Klein．
－Dajan was not electrocuted．

TIME ロF ARRIVAL	FIRSTNAME	LASTNAME	HロBBY
$9: 12$ PM	David	Metzger	Stabbing
$9: 45$ PM	Robert	Daniels	HeartAttack
$1 \square: 34$ PM	Wesley	Chang	Electrocution
$11: 14$ PM	Philippe	Santos	Aneurysm
$12: \square 4$ AM	Dajan	Kein	Hit－and－Run
$1: 11$ AM	Sayid	Archer	Drowning

THE DOCTロR WILL SEE Yロப NロW

Doc Robbins has had a busy night．Six bodies have been delivered to the morgue－all at different times and with different causes of death．Using the following information，can you determine the first and last name of each person，the cause of death，and the order in which they a mived？
－The bodies amived in the following order：First was David；then Mr．Daniels；the man who died by electrocution；Phillippe；the hit－and－run casualty；and last was Mr．Archer．
－Sayid was not killed by electrocution or by an aneurysm，but he did arive after Mr．Klein（who was also not electrocuted）．
－Mr．Metzger（who came in before Wesley）was stabbed to death by a former business associate．
－Mr．Santos was not the victim of a hit－and－run，nordid he die of electrocution．
－Robert（who did not die by drowning oran aneurysm）is neither Mr．Chang nor Mr．Klein．
－Dajan was not elec troc uted．

TIMEDF			
ARRIVAL	FIRGTNAME	LASTNAME	HロBBY
$9: 12$ PM			
$9: 45$ PM			
$10: 34$ PM			
$11: 14$ PM			
$12: \square 4 \mathrm{AM}$			
$1: 11 \mathrm{AM}$			

\qquad

THE DOCTロR WILL SEE Yロப NロW

		$\begin{aligned} & \grave{u} \\ & \sqrt[1]{n} \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & z \\ & \substack{4 \\ \vdots \\ \hline} \end{aligned}$	$\begin{aligned} & \frac{山}{a} \\ & \frac{a}{J} \\ & \frac{1}{\mathrm{I}} \end{aligned}$		$\begin{aligned} & \text { Q } \\ & \stackrel{y}{4} \end{aligned}$			$\begin{aligned} & \square \\ & Z \\ & \mathbb{1} \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & \underline{z} \\ & \stackrel{\rightharpoonup}{\mathbf{u}} \end{aligned}$		$\begin{aligned} & \stackrel{\alpha}{\omega} \\ & \stackrel{\sim}{N} \\ & N \\ & \stackrel{W}{N} \end{aligned}$						
－9：12 PM																		
－9：45 PM																		
－10：34 PM																		
－11：14 PM																		
12：ロ4 AM																		
1：11 AM																		
Stabbing																		
Electrocution																		
ANEURYSM																		
hit－And－Run																		
drawning																		
Heart Attack																		
Archer																		
SANTOS																		
chang																		
KLEIN																		
Daniels																		
Metzger																		

PRロBLEM：

At a nearby construction zone，workers have made a startling disc overy．They unc overed several bones that look like they were buried some time ago．You are part of a tea m of forensic anthropologists who have been called in to a nalyze these bones．

Unfortunately，the bones were heavily damaged by the construction equipment．The boneshave all been mixed up，and several have been crushed．However，you think you can use the bones that are left to：
1）determine how many people were buried at this location and
2）determine the heights of the different individuals．

ACTIVITY：

In the first part of the lesson students use their own bodies to explore how the lengths of various bones are related to a person＇sheight．Using data collected from the entire class， they will construct graphs comparing the length of the humerus and femurto a person＇s height．

In the second part，students a re provided with pictures of variousbones and a table of standard equations for computing height．All bones pictured a re life size．Students measure the bones and，using the tables，calculate the heights of the individuals．Using this information，students can then determine how many different individuals were buried in the grave．

La stly，students use their newly acquired information to search a fictional data base of missing persons．If the students correctly identify the heights of the various individuals，they should determine the six bones come from three different missing persons．Note：Though the students＇calculated heights should be in cm，the heights recorded in the database are in feet and inches（asthey are in most public records in the United States）．In orderto accurately＂search＂the data base，the students must convert the mea surements． One inch $=\mathbf{2 . 5 4} \mathbf{~ c m}$ ．

TEACHER NロTES：
Forensic anthropology is a unique forensic disc ipline that studies the human skeleton to answer various questions about an individuals race，sex，age，height，illness，and tra uma．In this particular exerc ise students will explore 1）how a single bone can reveal a person＇soverall height and 2）how this information can be used to make presumptive identifications．

A person＇s height can be affected by several variables：age，sex，race，health，etc．Anthropologists have compiled several formulas for determining the approximate height of an individual given the length of a ny of the long bones of the human body．It is important to stress to the students that these formulas only give a pproximations of height－they are not exact．

One of the main factors affecting a person＇s height is age．The formulas provided were designed for individuals between $23-30$ years old．Before the a ges of 18－23 a person＇s bones have yet to full ossify．Ossification is the natural replacement of cartilage with bone；it is responsible for nearly all bone growth．Because these bones are still growing，the relationship between bone length and an individual＇s height is extremely variable．Be sure that your class realizes that the data they collect from each other is only applic able to their same age group．It would NOTapply to adults．

MATERIALS：
－Metric Rulers
－Calculators

46

CSI：The Experience

CLASSRロロM MANAGEMENT：
Students should be divided into pairs or small groups for the first part of the activity to make height measurement easier． Each student will be required to collect data from six different classmates．If desired，the teachercan collect data from the entire class and create one large data set．The data should reveal a positive correlation between bone length and overall height．If desired，this activity could be repeated for other bones of the human body（or assigned as homework for students to complete with their fa milies）．

The second and third parts of the activity are designed to be completed individually by each student．

TEACHER ANSWER KEY

Nロ BONES ABOUT IT

When a body is disc overed，it is important to learn as much as possible from the remains．Forensic anthropologists use mathematic al formulas to estimate someone＇s height from the lengths of certain bones in their body．But where do these formulas come from？

1．Using a metric ruler，measure the length of your femur（thigh bone）in centimeters．This is the large bone that runs from your hip socket to your knee cap．Record this information in the table below．

2．Have a partner measure your actual height in centimeters．Record this information in the table below．
3．Collect the same information（femur length and height）from several of your classmates．Leave the＂calculated height＂row blank for now．

TABLE 1：CLASSRロロM MEASUREMENTS

NAME						
FEMSR LENGTH（CM）						
HEIGHT（CM）						
CALCULATED HEIGHT（CM）						

4．Use the graph paper on the next page to graph the data you＇ve collected．Use Femur Length for the x－axis and Height for the \mathbf{y}－axis

5．Use your graph to answer the following question：
What relationship is there between the length of someone＇s femur bone and their height？
Taller people tend to have longer femur bones．

TEACHER ANSWER KEY

Nロ BロNES ABDUT IT

Anthropologists have performed hundreds of calculations like the one we just did．Their calculations showed that a person＇s height can be estimated using the lengths of the long bones of the body－the femur，tibia，and fibula in the leg，a nd the ulna，radius，and humerus of the a m ．

However，the relationship between the length of these bones and a person＇s height is different for men and women，and forpeople from different races．The table below lists all the different equations forensic anthropologist use to estimate a person＇s height

TABLE 2：FGRMULAS FGR CALCULATING HEIGHT

BGNE	RACE	MALE EQUATIGN	FEMALE EQUATION
Femur	CAUCASIAN	2.32 ＊length +65.53 cm	2.47 ＊length +54.13 cm
	AFRICAN－AMERICAN	2.10 ＊length +72.22 cm	2.28 ＊length +59.76 cm
	Asian	2.15 ＊length +72.57 cm	Not Availa ble
Tibia	CAUCASIAN	2.42 ＊length +81.93 cm	2.90 ＊length +61.53 cm
	AFRICAN－AMERICAN	2.19 ＊length +85.36 cm	2.45 ＊length +72.56 cm
	Asian	2.39 ＊length +81.45 cm	Not Ava ila ble
Fibula	CAUCASIAN	2.60 ＊length +75.50 cm	2.93 ＊length +59.61 cm
	AFrican－AMERICAN	2.34 ＊length +80.07 cm	2.49 ＊length +70.90 cm
	AsiAN	2.40 ＊length +80.56 cm	Not Ava ila ble
Humerus	CAUCASIAN	2.89 ＊length +78.10 cm	3.36 ＊length +57.97 cm
	AFrican－American	2.88 ＊length +75.48 cm	3.08 ＊length +64.67 cm
	ASIAN	2.68 ＊length +83.19 cm	Not Ava ila ble
ULNA	CAUCASIAN	3.76 ＊length +75.55 cm	4.27 ＊length +57.76 cm
	AFRICAN－AMERICAN	3.20 ＊length +82.77 cm	3.31 ＊length +75.38 cm
	ASIAN	3.48 ＊length +77.45 cm	Not Ava ila ble

＊These formulas are calculated for ADULTmales and females．（from Bass，W．M．（1987）Human Osteology：A Laboratory and Field Manual（3rd ed．）．Missouri Archeaologic al Society，Columbia．）

Use the table to fill in the＂Calculated Height＂row on Table 1．Are the results close to the actual heights？What are some possible sources of enor？

Results will vary．Possible sources of emor inc lude－diffic ulty in acc urately measuring bones inside the body，natural variation among different people（equations only predict the average），and age． These equations were designed for adults；teenager height to bone length ratios are much more variable．

LロNG BロNES ロF THE HUMAN SKELETロN

TEACHER ANSWER KEY

Nロ BロNES ABOUT IT

The following bones were recovered from the construction site．A fellow forensic anthropologist has already classified the bonesby sexand race．Using the mathematic al formulas from Table 2，calculate the approximate height of each individual．

TABLE 3：ANALYSIS QF BONES FRQM CONSTRUCTION SITE

BINE\＃	TYPE GF BINE	LENGTH（CM）	RACE	SEX	CALCLLATED HEIGHT（CM）
1	HUMERUS	38.2	CAUCASIAN	MALE	188.5
2	FEMUR	$44 . \square$	AFRICAN－AMERICAN	FEMALE	160.1
3	ULNA	25.4	CAUCASIAN	MALE	171.1
4	FEMUR	52.4	CAUCASIAN	MALE	187.1
5	FEMUR	43.9	AFRICAN－AMERICAN	FEMALE	159.9
6	TIBIA	43.7	CAUCASIAN	MALE	187.7

Is it possible any of these bonescame from the same person？Which bones？
Bones \＃1，4，and 6 could have come from the same person． Bones \＃2 and 5 could have come from the same person． Bone \＃3 must have come fiom a different individual．

What is the minimum number of bodies buried at this site？What is the maximum number of bodies？
At least three different bodies were at this site，though there may be more．For example，bones \＃1，4，and 6 could have come from three different people who were all roughly the same height．

Do all bones from the same body give exactly the same height？If not，why would the heights be different？

Different bones from the same body can give different heights due to natural variations in arm and leg length．Also，these equations only estimate a person＇s height，and estimations are rarely spec ific to the exact millimeter．However，we expect the heights to be close（e．g． a few millimeter different，but not a few centimeters different）．

TEACHER ANSWER KEY

Nロ BロNES ABロUT IT

Another forensic anthropologist on the team estimates the rema ins have been bunied three to four years．A search of the local missing person＇s database shows that the following people disappeared during that time：

MISSING PERSGNS DATABASE

Missing Persan \＃Z

NAME：RロSALYN FAIRBANKS	HEIGHT：	5＇7＂	
AGE：	36	HAIR CILロR：BLACK	
SEX：	F	EYE CロLロR：	GREEN
RACE：CAUCASIAN			
DISTINGUISHING MARKS：			
WEARS GLASSES ロR CORRECTIVE LENSES			

MISSING PERSON \＃3

NAME：DEVロN BAILEY
AGE： 45
SEX：M
RACE：AFRICAN－AMERICAN

DIGTINGUIGHING MARK马：
NaNE

HEIGHT：5’8＂
HAIR CロLロR：BLACK
EYE CロLロR：BRロWN

MISSING PERSGNS DATABASE

Missing PERSaN \＃4

NAME：WAYNE AUGHNEY
AGE： 36
SEX：M
RACE：CAUCASIAN
DISTINGUISHING MARKS：
TATTロロ ロF A DRAGロN ロN UPPER RIGHT ARM

HEIGHT：
6＇2＂
HAIR CロLロR：BLACK
EYE CロLロR：BROWN

Missing Persan \＃5

NAME：CRYSTAL WILSロN
AGE： 47
SEX：F
RACE：AFRICAN－AMERICAN

DISTINGUISHING MARKS：
LARGE BIRTHMARK ロN UPPER BACK

HEIGHT：5＇ $3 "$
HAIR CロLロR：BLACK
EYE CロLロR：BRロWN

Missing Persan \＃G

NAME：لESSIE ANDERSロN
AGE： 46
SEX：M
RACE：AFRICAN－AMERICAN

DIGTINGUIGHING MARKG：
SURGICAL SCARS ロN THE BACK AND LEGS DUE Tロ INJURIES IN AN AUTロMロBILE ACCIDENT

Missing Persan \＃7

NAME：HERMAN ARBAS
AGE： 29
SEX：M
RACE：CAபCASIAN

DIGTINGUIGHING MARKG：
SaARS ロN THE FロREHEAD AND RIGHT CHEEK FRDM CロNSTRUCTIロN ACCIDENT

HEIGHT： 5 ＇4＂
HAIR CロLロR：BLACK
EYE CロLロR：BRロWN

5＇8＂
HAIR C口LロR：BLロND
EYE C口LロR：BRロWN

TEACHER ANSWER KEY

Nロ BロNES ABGUT IT

Using the database, can you determine the possible identities of the people buried at the site?
Bones \#1, 4, and 6 could have come from Missing Person \#4
Bones \#2 and 5 could have come from Missing Person \#5 Bone \#3 could have come from Missing Person \#7

Are the heights exactly what you expected them to be? Why or why not?
Answers will vary. The heights ar slightly different than the calculated values, and the possible reasons for this are varied, including:

These bones do not belong to that missing person, but someone of similar height Natural variation in bone length, even between the same person's two arms The computed heights are estimates etc

What are some possible sources of enor in your identification?

If the person buried here had unusually long arms or legs the height estimation tables may not be accurate.

If the people that are buried here are not listed as missing persons, they identifications will be wrong.

If the estimations of time, sex, or ethnic ity are off, the heights will not be accurate.
Etc...

What other forensic tests could you do to test your deductions?

The next step would be to try and collect DNA samples from the bones. These samples can be used to confim which bones came from the same buried body, and could be used to positively identify the bodies if DNA samples from the missing persons or their family members are available.

Another possibility would be hiring a forensic artist to do facial reconstruction, if any skulls were found at the site.

Nロ BロNES ABOUT IT

When a body is disc overed，it is important to learn as much as possible from the remains．Forensic a nthropologists use mathematic al formulas to estimate someone＇s height from the lengths of certain bones in their body．But where do these formulascome from？

1．Using a metric ruler，measure the length of your femur（thigh bone）in centimeters．This is the large bone that runs from your hip socket to your knee cap．Record this information in the table below．

2．Have a partner measure your actual height in centimeters．Record this information in the table below．
3．Collect the same information（femur length and height）from several of your classmates．Leave the＂calculated height＂row blank for now．

TABLE 1：CLASSRロロM MEASUREMENTS

NAME						
FEMUR						
LENGTH（CM）						
HEIGHT（CM）						
CALCULATED HEIGHT（CM）						

4．Use the graph paper on the next page to graph the data you＇ve collected．Use Femur Length for the x－axis and Height for the \mathbf{y}－axis

5．Use your graph to answer the following question：
What relationship is there between the length of someone＇s femur bone and their height？

Nロ BロNES ABロUT IT

Anthropologists have performed hundreds of calculations like the one we just did．Their calculations showed that a person＇s height can be estimated using the lengths of the long bones of the body－the femur，tibia，and fibula in the leg，and the ulna，radius，and humerus of the a m．

However，the relationship between the length of these bones and a person＇s height is different formen and women，and for people from different races．The table below lists all the different equations forensic anthropologist use to estimate a person＇s height

TABLE 2：FロRMULAS FGR CALCULATING HEIGHT

BGNE	RACE	MALE EQUATİN	FEMALE EQUATIGN
Femur	CAUCASIAN	2.32 ＊length +65.53 cm	2.47 ＊length +54.13 cm
	AFRICAN－AMERICAN	2.10 ＊length +72.22 cm	2.28 ＊length +59.76 cm
	Asian	2.15 ＊length +72.57 cm	Not Ava ilable
Tibia	CAUCASIAN	2.42 ＊length +81.93 cm	2.90 ＊length +61.53 cm
	AFrican－American	2.19 ＊length +85.36 cm	2.45 ＊length +72.56 cm
	Asian	2.39 ＊length +81.45 cm	Not Ava ila ble
Fibula	CAUCASIAN	2.60 ＊length +75.50 cm	2.93 ＊length +59.61 cm
	AFRICAN－AMERICAN	2.34 ＊length +80.07 cm	2.49 ＊length +70.90 cm
	Asian	2.40 ＊length +80.56 cm	Not Ava ila ble
Humerus	CAUCASIAN	2.89 ＊length +78.10 cm	3.36 ＊length +57.97 cm
	African－AmErican	2.88 ＊length +75.48 cm	3.08 ＊length +64.67 cm
	Asian	2.68 ＊length +83.19 cm	Not Ava ila ble
ULNA	CAUCASIAN	3.76 ＊length +75.55 cm	4.27 ＊length +57.76 cm
	African－American	3.20 ＊length +82.77 cm	3.31 ＊length +75.38 cm
	Asian	3.48 ＊length +77.45 cm	Not Ava ilable

＊These formulas are calculated for ADULTmales a nd females．（from Bass，W．M．（1987）Human Osteology：A Laboratory and Field Manual（3rd ed．）．Missouri Archeaologic al Society，Columbia．）

Use the table to fill in the＂Calculated Height＂row on Table 1．Are the results close to the actual heights？What are some possible sources of emor？

LロNG BロNES ロF THE HUMAN SKELETロN

\qquad

Nロ BロNES ABDUT IT

The following bones were recovered from the construction site．A fellow forensic anthropologist has already classified the bones by sexand race．Using the mathematical formulas from Table 2，calculate the approximate height of each individual．

TABLE 3：ANALYSIS QF BUNES FRQM CONSTRUCTION SITE

BINE\＃	TYPE ロF BIANE	LENGTH（CM）	RACE	SEX	CALCULATED HEIGHT（CM）
1	HUMERUS	38.2	CAUCASIAN	MALE	
2	FEMUR	$44 . \square$	AFRICAN－AMERICAN	FEMALE	
3	ULNA	25.4	CAUCASIAN	MALE	
4	FEMUR	52.4	CAUCASIAN	MALE	
5	FEMUR	43.9	AFRICAN－AMERICAN	FEMALE	
6	TIBIA	43.7	CAUCASIAN	MALE	

Is it possible any of these bonescame from the same person？Which bones？

What is the minimum number of bodies buried at this site？What is the maximum number of bodies？

Do all bones from the same body give exactly the same height？If not，why would the heights be different？

Nロ BONES ABDUT IT

Another forensic anthropologist on the team estimates the remains have been buried three to four years．A search of the local missing person＇s database shows that the following people disappeared during that time：

MISSING PERSロNS DATABASE

NAME：	Dana Grant	MISSING PERSロN \＃ 1	
		HEIGHT：	5＇口＂
AGE：	27	HAIR CロLロR：	Black
SEX：	F	EYE COLロR：	Braw
RACE：	African－Amer		
DISTINGUISHING MARKS：			

Missing PERSaN \＃Z

NAME：RロSALYN FAIRBANKS
HEIGHT：
5＇7＂
AGE：3G
HAIR CロLロR：BLACK
SEX：F
EYE CロLロR：GREEN
RACE：CAUCASIAN

DIGTINGUIGHING MARKG：
WEARS GLASSES ロR CロRRECTIVE LENSES

MISSING PERSON \＃3

HEIGHT：5’8＂
HAIR CロLロR：BLACK
EYE CロLロR：BRロWN
\qquad

Nロ BロNES ABロUT IT MISSING PERSロNS DATABASE

Missing Persan \＃4

NAME：WAYNE AUGHNEY
AGE： 36
SEX：M
RACE：CAUCASIAN
DISTINGUISHING MARKS：
TATTロロ ロF A DRAGロN ロN UPPER RIGHT ARM

MISSING PERSON \＃5

NAME：ᄃRYSTAL WILSロN
AGE： 47
SEX：F
RACE：AFRICAN－AMERICAN

DIGTINGUISHING MARKG：
LARGE BIRTHMARK ロN UPPER BACK

Missing Persan \＃G

NAME：لESSIE ANDERSロN
AGE： 46
SEX：M
RACE：AFRICAN－AMERICAN

DISTINGUISHING MARKS：
SURGICAL SCARS ロN THE BACK AND LEGS DUE Tロ INJURIES IN AN AUTロMロBILE ACCIDENT

Missing Persan \＃7

NAME：HERMAN ARBAS
AGE： 29
马EX：M
RACE：CAபCASIAN

HEIGHT： 5 ’3＂
HAIR CロLロR：BLACK
EYE CロLロR：BROWN

HEIGHT： 5 ＇4＂
HAIR CロLロR：BLACK
EYE CロLロR：BRロWN

DIGTINGUISHING MARKG：

SロARS ロN THE FロREHEAD AND RIGHT CHEEK FRロM CロNSTRUCTIロN ACCIDENT

NロBロNES ABロபT IT

Using the database，can you determine the possible identities of the people buried at the site？

Are the heights exactly what you expected them to be？Why or why not？

What are some possible sources of error in your identific ation？

What other forensic tests could you do to test your deductions？

PRロBLEM：

Three weeks ago a local bakery was robbed at gunpoint．The thief wore a mask，so even when the police found a suspect the bakery owner couldn＇t make a positive ID．However，as the CSI processing the scene，you collected several fingemrints from various parts of the bakery．

The police have identified a suspect，but he says he＇s never been to that bakery．It＇s your job to see if the suspect＇s fingerprints match any of those recovered at the scene of the c rime．

ACTIVITY：

Students are first introduced to the three main types of fingerprints：loops，whorls，and arches．Using a balloon and a numbertwo pencil，each student will determine the total numbers of loops，whorls，and arches on his or herten fingers． The teachercan then add the individual totals to determine the total numbers of loop，whorl，a nd arch fingerprints in the class as a whole．Students should record this information on
their worksheets．
The students are then shown a bargraph illustrating the percentage of loop，whorl，and arched fingerprints in the United Sta tes population．After a nswering several questions a bout his graph，they are prompted to construct a similar bargraph using their classroom percentagesfor each type of print．The students are then a sked a series of questions designed to test their understa nding of the activity．

Lastly，students are presented with copies of the suspect＇s fingerprints a nd those obtained from the crime scene． The students are instructed on how to identify va rious ridge characteristics（isla nd，ridge ending，bifurcation，etc．）．Using the ridge characteristic s of the prints，the students should be able to identify which of the prints at the crime scene were left by the suspect－even to the point of which finger they came from．One of the crime scene prints（from the display case）will not match the suspect．This is to be expected in a public crime scene where several people（customers，owner，workers）have been present．

TEACHER NロTES：

Fingerprints have been used for identific ation throughout history，but it was Sir William Herschel in J ungipoor，India，who first recognized their true potential．He was the first to espouse the theory that all fingerprints are unique to an individual and are permanent throughout a person＇s lifetime．These principles were later scientific ally investigated a nd promulgated by Sir Fracis Galton，a British anthropologist．A student of his，J uan Vucetich，made the first criminal fingerprint identific ation in 1892 when he used FrancisRojas bloody fingerprint to convince a jury she had murdered hertwo sons．Today，we now accept ascommon fact that 1）all fingerprints are unique，and no two are exactly identical，2）a fingerprint will remain unchanged during a person＇s lifetime，and 3）fingerprints have distinct patterns that can be classified and used for comparison．

Fingerprints can be divided into three main types：loops，whorls，a nd arches．Loopsare the most common type of fingerprint；on average 65% of all fingerprints are loops．Approximately 30% of all fingerprints are whorls，a nd arc hes only oc cur about 5% of the time．There are subcategories for each of these．Loops are subdivided into radial loops（the loop enters and exits the finger on the side closest to the thumb）a nd ulna loops（the loop enters and exits the finger on the side closest to the pinky finger）．Archescan be pla in（the ridges are flat or only show a slight peak）or tented（sharp，well defined peak）．Whorls can be plain，central pocket （eleva ted，usually sma ller whorl pattem），double loop（whorl made of two distinct loop pattems），or accidental（combination of all of the above）．

In order to conc lusively match individual fingerprints，fingeprint exa miners use ridge characteristics，also known as minutia．The most common types of ridge characteristics are bifurc ations，ridge endings，a nd islands，though there are several different categories a nd subcategories for each of these．A single rolled fingerprint may have more than 100 different ridge characteristics． In the United States there in no minimum number of ridge characteristics that must be used to match up two fingerprints（though eight or more is considered＂standard＂and twelve is＂suffic ient＂）．However，the match must be made by one verified fingerprint examiner（usually trained by the Intemational Association for Identific ation（IAI））and verified by second verified exa miner．

MATERIALS：

－White latex balloons（at least one perstudent）
－\＃2 pencils（one perstudent）

CLASSRロロM MANAGEMENT：

For the most part this a ctivity is designed to be completed
ind ividually by each student，though the data from all students will be pooled together during the first part．If desired， students can work together in pairs or small teams．There will be considerable interest in sharing and comparing the fingerprints on the various balloons，espec ially if certa in rare or unique fingerprints are discovered（e．g．arches，double whorls， etc．）．These balloons can also be used to disc uss why certa in fingerprints，whic h look very simila r ，a re still different and unique． The ridge characteristics should be relatively easy to identify on the expanded balloons．

TEACHER ANSWER KEY

STICKY FINGERS

Part 1: Are some kinds of fingerprints more common than others?

1. Fill in each of these squares using a \#2 pencil. Make sure each square is dark and shiny.

2. Blow up a balloon to about the same size as a baseball and tie it loosely.
3. Press each finger into one of the boxes, then gently press it a gainst the balloon. Use a different part of the balloon foreach finger!
4. Blow up the balloon larger. Watch the fingerprints EXPAND.
5. Compare each fingerprint to the provided examples. Determine whether it is a loop, whorl, orarch.

The most common type of print; some ridgesenter and exit on the same side of the finger.

ARCH
The least common type of print; ridges run from one side of the
finger to the other.
6. Record your data below:

	THUME	INDEX	MIDDLE	RING	PINKY
RIGHT HAND					
LEFT HAND					

TEACHER ANSWER KEY

STICKY FINGERS

Using the data from both your hands, count the total numbers of loops, whorls, a nd arches.
Total\# Loops: \qquad
Total\# Whorls: \qquad
Total\# Arches: \qquad

As a class, calculate the total number of loop, whorl, and arch fingenprints for the entire class. Record that data here:
C lassroom Total\# Loops:
Classroom Tota|\# Whorls:
Classroom Total\# Arches:
C lassroom Total\# All Fingerprints: \qquad

Next, calculate the percentage of each type of fingerprint in your classroom population. For example, the Percentage of Loops $=($ Total\# Loops/ Total\# All Fingerprints) $\times 100$

Percentage Loops:	
Percentage Whorls:	
Percentage Arches:	
Total Percentages:	100%

STICKY FINGERS

The chart below shows the how often each of these types of fingerprints oc cur in the national population. Use this chart to answer the following questions.

1. What percentage of fingerprints in the national population are loops?

65\%
2. What percentage of fingerprints in the national populations are whorls?

30\%
3. What percentage of fingerprints in the national population are arches?

5\%
4. Which is greater. the number of loop fingerprints in the national population, or the number of whorl fingerprints plus the number of arch fingerprint?

> The number of loop fingerprints $(65 \%>(35 \%+5 \%))$
5. In a random sampling of 1000 fingerprints from the national population, approximately how many arch fingerprints can you expect to find?

$0.05 \times 1000=$ approximately 50 arch fingerprints

TEACHER ANSWER KEY

STICKY FINGERS

Use the data collected from your class as a whole to fill in the next graph. Use the data from both graphsto answer the following questions.

1. Does the graph of fingerprints in your classlook the same as the graph of the national averages? Why or why not?

Though the graphs will probably be similar, they may not be identical. There is natural variation in all populations. The fist graph only shows the averages for the US population.
2. Would you predict that a graph of fingerprint pattems from another class would look the same as your graphs? Why or why not? How could you find out if your prediction is correct?

A graph of fingerprints from another classroom would probably look similar, but not identical to both graphs (the classroom and the national population). Again, this is due to naturally occ uring variations. The only way to see what the graph of the other classroom would look like is to repeat the experiment in that classroom
3. The fingerprints from a recent crime scene are shown on the next page. Using the data from the national population would you say this suspect has common fingerprints? Why or why not?

Of the suspects 10 fingerprints, 3 (30\%) are arches, 3 (30\%) are whorls, and 4 (40\%) are loops. He has an unusually high number of arc hes, making his fingerprints highly unusual.

TEACHER ANSWER KEY

STICKY FINGERS

EVIDENCE FRIM CASE \#4589241-B

FINGERPRINTS FRGM GRIME SCENE

FRロM CASH REGISTER
FRロM DISPLAY CASE

SUSPECT'S FINGERPRINTS

RIGHT HAND

LEFT HAND

TEACHER ANSWER KEY

STICKY FINGERS

Part 2：Do the suspect＇s fingemprints match those at the crime scene？
In the previous exerc ise，you should have noticed that everybody has similar fingerprints．For example， many students in your class may have fingemrints that are all loops，or nine loops and a whon．If everyone＇s fingerprints are so similar，how can forensic scientists link certain fingerprints to a specific individual？

Forensic scientists use ridge characteristics to identify an individuals＇fingerprints．These include：

Ridge Ending

BIFURCATION

DロT

ISLAND（SHORT RIDGE）

LAKE（ENCLロSURE）

Haロk（Spur）

DロUBLE BIFURCATION

TEACHER ANSWER KEY

STICKY FINGERS

Three weeks ago a local bakery was robbed at gunpoint. The thief wore a mask, so even when the police found a suspect the bakery ownercouldn't make a positive ID. However, as the CSI processing the scene, you collected several fingerprints from various parts of the bakery.

The police have identified a suspect, but he sayshe's never been to that bakery. It's your job to see if the suspect's fingerprints match a ny of those recovered at the scene of the crime.

1. Can you identify any ridge characteristics on the suspects prints? on the prints from the crime scene? Circle and label any ridge characteristic syou find.

There are a variety of ridge characteristics. The most common will be ridge endings, lakes, and bifurc ations, but there are also hooks, dots, and islands.
2. Do any of the crime scene fingeprints match the suspect's fingerprints? La bel a ny matc hing crime scene fingerprints with the hand and finger they come from.

From Cash Register (top row) = Left Thumb
From Display Case = NO MATCH
From Cash Register (bottom row) = Right Thumb
From Door = Left Pinkie
From Door = Left Ring
3. Do any of the crime scene prints NOTmatch the suspect's prints? Who do you think could have contributed these prints?

The print from the display case does not match the suspect. This print could belong to the shop owner or a customer.
4. Do you think the suspect committed this c rime? Why or why not?

Answers may vary, but students should point out that 1) the suspect has deffiantly been to the bakery, which contradicts his earlier statement, and 2) one of his prints was found on the cash register. Even if he was in the bakery as a c ustomer, why would his print be on the cash register?
\qquad

马TIGKYFINGERS

Part 1: Are some kinds of fingerprints more common than others?

1. Fill in each of these squares using a \#2 pencil. Make sure each square is dark and shiny.

2. Blow up a balloon to about the same size as a baseball and tie it loosely.
3. Press each finger into one of the boxes, then gently press it against the balloon. Use a different part of the balloon foreach finger!
4. Blow up the balloon larger. Watch the fingerprints EXPAND.
5. Compare each fingeprint to the provided examples. Determine whether it is a loop, whorl, orarch.

The most common type of print; some ridgesenter and exit on the same side of the finger.

ARCH
The least common type of print; ridges run from one side of the
finger to the other.
6. Record your data below:

	THUME	INDEX	MIDDLE	RING	PINKY
RIGHT HAND					
LEFT HAND					

STICKY FINGERS

Using the data from both your hands, count the total numbers of loops, whorls, a nd arches.
Total\# Loops: \qquad
Total\# Whorls: \qquad
Total\# Arches: \qquad

As a class, calculate the total number of loop, whorl, and arch fingenprints for the entire class. Record that data here:
Classroom Total\# Loops:
Classroom Tota |\# Whorls:
Classroom Total\# Arches:
C lassroom Total\# All Fingerprints: \qquad

Next, calculate the percentage of each type of fingerprint in your classroom population. For example, the Percentage of Loops $=$ (Total\# Loops/ Total\# All Fingerprints) $\times 100$

Percentage Loops:	
Percentage Whorls:	
Percentage Arches:	
Total Percentages:	100%

STICKY FINGERS

The chart below shows the how often each of these types of fingerprints oc cur in the national population. Use this chart to answer the following questions.

1. What percentage of fingerprints in the national population are loops?
2. What percentage of fingerprints in the national populations are whorls?
3. What percentage of fingerprints in the national population are arches?
4. Which is greater: the number of loop fingerprints in the national population, or the number of whorl fingerprints plus the number of arch fingerprint?
5. In a random sampling of 1000 fingerprints from the national population, approximately how many arch fingerprints can you expect to find?

PAGE 3 OF 7
CSI: THE EXPERIENCE - EDUCATロR'S GUIDE

STICKY FINGERS

Use the data collected from yourclass as a whole to fill in the next graph. Use the data from both graphsto answer the following questions.

1. Does the graph of fingerprints in your classlook the same as the graph of the national averages? Why or why not?
2. Would you predict that a graph of fingerprint pattems from another class would look the same as your graphs? Why or why not? How could you find out if your prediction is correct?
3. The fingeprints from a recent crime scene are shown on the next page. Using the data from the national population would you say this suspect hascommon fingerprints? Why or why not?
\qquad

STICKY FINGERS

EVIDENCE FRDM CASE \＃4589241－B

FINGERPRINTS FRGM CRIME SCENE

FROM DISPLAY CASE

SபSPECT＇S FINGERPRINTS

RIGHT HAND

LEFT HAND

STICKY FINGERS

Part 2：Do the suspect＇s fingempints match those at the crime scene？
In the previous exercise，you should have noticed that everybody has similar fingerprints．For example， many students in your class may have fingem rints that are all loops，or nine loops and a whorl．If everyone＇s fingemprints are so similar，how can forensic scientists link certain fingemprints to a specific individual？

Forensic scientists use ridge characteristics to identify an individuals＇fingerprints．These include：

Ridge Ending

BIfURCATION

Dロт

ISLAND（SHORT RIDGE）

LAKE（ENCLDSURE）

Haロk（Spur）

DaUble Bifurcatian

STICKY FINGERS

Three weeks ago a local bakery was robbed at gunpoint. The thief wore a mask, so even when the police found a suspect the bakery owner couldn't make a positive ID. However, as the CSI processing the scene, you collected several fingerprints from various parts of the bakery.

The police have identified a suspect, but he says he's never been to that bakery. It's your job to see if the suspect's fingerprints match a ny of those recovered at the scene of the crime.

1. Can you identify any ridge characteristics on the suspects prints? on the prints from the crime scene? Circle and label a ny ridge characteristic syou find.
2. Do any of the crime scene fingeprints match the suspect's fingerprints? La bel a ny matc hing crime scene fingerprints with the hand and finger they come from.
3. Do any of the crime scene prints NOTmatch the suspect'sprints? Who do you think could have contributed these prints?
4. Do you think the suspect committed this c rime? Why or why not?

[^0]: - Which analyses that were performed, and their results
 - Whether these results incriminate or exonerate any of the suspects
 - Whether any further analyses need to be performed, and why
 - Your intepretation of how the crime oc curred.

